2-walks in 3-connected Planar Graphs
نویسندگان
چکیده
In this we prove that every 3-connected planar graph has closed walk each vertex, none more than twice, such that any vertex visited twice is in a vertex cut of size 3. This both Tutte's Theorem that 4-connected planar graphs are Hamiltonian and the result of Gao and Richter that 3-connected planar graphs have a closed walk visiting each vertex at least once but at most twice.
منابع مشابه
Enumerative Properties of Rooted Circuit Maps
In 1966 Barnette introduced a set of graphs, called circuit graphs, which are obtained from 3-connected planar graphs by deleting a vertex. Circuit graphs and 3-connected planar graphs share many interesting properties which are not satisfied by general 2-connected planar graphs. Circuit graphs have nice closure properties which make them easier to deal with than 3-connected planar graphs for s...
متن کاملDecomposing Infinite 2-Connected Graphs into 3-Connected Components
In the 1960’s, Tutte presented a decomposition of a 2-connected finite graph into 3-connected graphs, cycles and bonds. This decomposition has been used to reduce problems on 2-connected graphs to problems on 3-connected graphs. Motivated by a problem concerning accumulation points of infinite planar graphs, we generalize Tutte’s decomposition to include all infinite 2-connected graphs.
متن کاملSeries-parallel subgraphs of planar graphs
In this paper we show that every 3-connected (3-edge-connected) planar graph contains a 2-connected (respectively, 2-edge-connected) spanning partial 2-tree (seriesparallel) graph. In contrast, a recent result by [4] implies that not all 3-connected graphs contain 2-edge-connected series-parallel spanning subgraphs.
متن کاملOne-way infinite 2-walks in planar graphs
We prove that every 3-connected 2-indivisible infinite planar graph has a 1-way infinite 2-walk. (A graph is 2-indivisible if deleting finitely many vertices leaves at most one infinite component, and a 2-walk is a spanning walk using every vertex at most twice.) This improves a result of Timar, which assumed local finiteness. Our proofs use Tutte subgraphs, and allow us to also provide other r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Australasian J. Combinatorics
دوره 11 شماره
صفحات -
تاریخ انتشار 1995